
����������	
���������

�
����
�
����
��
�
���
�

���

�����		����� ��!"	����#$#	%&��'%���������������

(�)*
�+ ,-!. �/
�0

1 -+1-
%+�
�-1�+���"/2
�!%3�42
5��%+�

((��-
�!�6-1�
4%.
0&+�-�
0!�'
��-
�%� �+%�
�-+�!-
0�!
7-.-%!1�
%+�
8-,-���'-+�

)!9-"�!9
�%!� -�(2
��+!%�
)%1(2
�%1 -6
5-�3�(

�������	
����
���

����
�

���

��
���
���
�����������
�����������������	

������
��������

Quality improvement of a manufactured product is a natural process accompanying
the development of civilization. Nowadays, designed machines are much more accurate
and efficient. In addition, the flexibility of production needs to increase functionality built
machines. Among all machines assigned for manufacturing purposes, milling machines play
a significant role. Common three-axis milling machines characterized by simple kinematics
are being increasingly replaced by universal machines with multiple degrees-of-freedom, as
their versatility allows implementation of a variety of tasks, such as turning or milling in
different planes. While the machines accuracy is determined by its mechanics parameters
and applied control system, the flexibility and performance are often determined by the lim-
itations of computational power of the milling machines control system. When choosing
a parallel structure as a support structure for the milling machine, kinematics calculations,
necessary for the correct tool movement along the desired trajectory path, are a major con-
cern. Those calculations should be performed in real time, at a frequency level of the operat-
ing driver system. In this paper the increase of computation power, when determining
the kinematics of the milling machine based on a parallel robot, with the usage of a FPGA
system equipped with a processor with additional dedicated instructions, is presented.

�������
���
��
����	

A parallel robot is a mechanism, which arms consisting of any number of kinematics
chains are connected by a joint or a platform [1]. Closed kinematics gives the construction
much more rigidity and enables it to work more precisely and faster than constructions with
open kinematics. A disadvantage of this structure is a smaller workspace. The workspace is
limited by an arm movement range and it is a common part of sets of points possible to
achieve by each arm.

http://dx.doi.org/10.7494/automat.2013.17.2.187
biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy
**

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

biuro
Tekst maszynowy

���)!9-"�!9
�%!� -�2
��+!%�
)%12
�%1 -6
5-�3�

��������
�����	

To obtain the full advantages of the robots’ movement capabilities, the forward and
inverse kinematics must be determined. The solution of the forward kinematics gives a clear
rule defining the position of the tools tip in Cartesian space, depending on the position
of each arm. Much more useful information is provided by their reverse relationship, being
the solution of the inverse kinematics, which for a given point in space defined by the
Cartesian space gives the position of the robots joints in configuration which the desired
point is being reached. For the parallel robots, it is much easier to find the solution of
the inverse kinematics, than the forward one [2]. By knowing the solution of the inverse
kinematics, the robot can be treated as a Cartesian structure and with tools such as NC code
generators for milling machines can be therefore used directly. The only drawback of an
approach such as this is the calculation of the inverse kinematics, converting coordinates
from the Cartesian space directly in to the joint lengths. It should be noted that the calcula-
tions must be carried out at any point of the trajectory, in real time, with the operating
frequency of the trajectory generator.

��� !
�"�
���
��
�������
�������#

The construction of a parallel robot for milling (Fig. 1) was developed in Department
of Robotics and Mechatronics AGH [3]. The robot consists of three arms connected togeth-
er with a moving platform. Inside the platform there is a spindle rotating a milling bit at
40 000 rpm. This can be classified as high-speed machining (HSM). HSM means using
spindle speeds that are significantly higher than those used in conventional machining oper-
ations. Typical HSM spindle velocities range between 8 000 and 35 000 rpm, although some
spindles nowadays are designed to rotate at over 100 000 rpm.

��#�
��
5%!%��-�
!�:��
4 ��
��!--
�-"!--.
�0
0!--��'
0�!
' �� +"

;���
<����
	�
���
�
����
�
���

��

��
�

�

�����
���������
��
��
������ ���

���������	
����
��������

Figure 2 presents the kinematic structure of the robot. It consists of three arms I, II, III
attached to the base on the vertices of an equilateral triangle inscribed into a circle with
radius R. Each arm can protrude by changing lengths l1, l2, l3. All rotary joints are based on
universal joints.

����
��
���
���������
��
����
�
��
���
��
�

�

����

���������
�����������������$��
��%���	
���
�������	

For such a kinematic structure, the solution of the inverse kinematics problem was
solved [4]. Distances A and B can be simplified [5]. The solution of the inverse kinematics
problem takes form of the following equation sets: (1):

()22 2
1

2 23 1 2
2 2 2

2 23 1 2
2 2 2

l x y R z

l x R y R z

l x R y R z

= + − +

⎛ ⎞ ⎛ ⎞= − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

(1)

where:
x, y, z = the position of the tool in the Cartesian space,

R = radius of the circle on which robot arms are placed,
l1, l2, l3 = arms lengths.

For the full realization of the trajectory in the workspace derived equations (1) should
be solved. These derivatives allow for the transformation of velocity and acceleration of
the tool in the Cartesian space to the speed and acceleration of the drives (2)–(4)

�� �
!�"�
!
��
���
#
���
��
���#
$����%
�����

()

()
1

22 2

2
2 2

2

3
2 2

2

2 2 21

2

3 1
2 2 2

2 21

2
3 1

2 2

3 1
2 2 2

2 21

2
3 1

2 2

x y z

x y z

x y z

x v y R v z v
v

x y R z

x R v y R v z v

v

x R y R z

x R v y R v z v

v

x R y R z

⋅ ⋅ + ⋅ − ⋅ + ⋅ ⋅
=

+ − +

⎛ ⎞ ⎛ ⎞⋅ − ⋅ + ⋅ + ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
=

⎛ ⎞ ⎛ ⎞− + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
=

⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

(2)

where:
vx, vy, vz = tool velocity in the Cartesian space,
v1, v2, v3 = drives velocity.

()()

()()
()

()

2

1

22 2

2 2 2

22 2

2

2

2 2
2

2 2 21
34
2

2 2 2 2 2 21

2

3 1
2 2 2

2 2
1

34
23 1

2 2

2
1

2

x y z

x x y y z z

x y z

x

x v y R v z v
a

x y R z

v x a v y R a v z a

x y R z

x R v y R v z v

a

x R y R z

v

⋅ ⋅ + ⋅ − ⋅ + ⋅ ⋅
= − +

+ − +

⋅ + ⋅ ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅ ⋅
+

+ − +

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ − ⋅ + ⋅ + ⋅ + ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
= − +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⋅

+

2 2 2

2 2
2

3 1
2 2 2 2 2

2 2

3 1

2 2

x y y z zx R a v y R a v z a

x R y R z

⎛ ⎞ ⎛ ⎞+ ⋅ − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞− + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

(3)

;���
<����
	�
���
�
����
�
���

��

��
�

�

�����
���������
��
��
������ ���

2

3

2 2
2

2 2 2

2 2
2

3 1
2 2 2

2 2
1

34
23 1

2 2

3 1
2 2 2 2 2 2

2 2
1

2
3 1

2 2

x y z

x x y y z z

x R v y R v z v

a

x R y R z

v x R a v y R a v z a

x R y R z

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
= −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟+ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
+

⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

(4)

where:
ax, ay, az = tool acceleration in the Cartesian space,
a1, a2, a3 = drives acceleration.

&���������
�������%���	
�����
����
����

The equations presented in the previous section allow to transform the trajectory
generated in the Cartesian space into parallel robot’s trajectory in joint space. In the case of
implementing equations in actual controller the most important factors are related to accura-
cy and speed of calculations. In this regard an interesting solution is the implementation
of the kinematics equations in a controller based on FPGA [6, 7].

&����'�
�������
(�����)

An example of the trajectory is shown in Figure 3. Was assumed, that trajectory is
a horizontal circle with 0.150 m radius situated on the height of 0.3 m.

����
&�
���

����
��
��
������
�����

��& �
!�"�
!
��
���
#
���
��
���#
$����%
�����

Figure 4 shows the waveforms corresponding to the trajectory in Cartesian space and
the joint space. Each point of the circle in the joint space
was described by the nine param-
eters.: position px, py, pz, velocity vx, vy, vz and acceleration ax, ay, az. For each point
calculated lengths l1, l2, l3, also the speed v1, v2, v3 and accelerations a1, a2, a3 were
calculated. These points are determined by solving the inverse kinematics, which imple-
mented on a PC with the use of double-precision floating-point variables (double).

����
*�
�
�%����
'
��
��
������
�����
>
���?
���
��
���
%����
�����
>��
���

�"��?

&�����	���	���
����

Equations (1)–(4) were implemented in Altera FPGA chip [8]. Terasic DE2-115 board
was chosen as a platform for testing (Fig. 5). Clock frequency of the Cyclone IV was set to
50 MHz.

����
+�
(@&A��B
���
�
=
����
�
����
�

;���
<����
	�
���
�
����
�
���

��

��
�

�

�����
���������
��
��
������ ��)

In the first step by using the tools included in the package QSYS microprocessor sys-
tem based on the Nios II processor was built (Fig. 6). It contains the memory of “OnChip”
and data “sdram” on trajectory. Communication with a PC and the JTAG interface and an
RS232 port located on the DE2-115.

����
,�
*���
��
����
�
����"��

��
C*+*
���
�������

Three systems were created. The first one is without arithmetic coprocessor, in which
floating-point operations are executed in software with single precision using math library
provided by a compiler. The second system was equipped with a floating-point coprocessor
of single precision provided by Altera. This coprocessor enables to perform operations like
hardware summation multiplication, subtraction and division. The last system is also
equipped with the arithmetic coprocessor but is expanded with a custom instruction en-
abling hardware calculation of the square root. Written in Verilog algorithm of floating-
point square root [10] is reduced to the calculation of the square root of an integer, which
results was determined by a mathematical relation (5):

2
2 2

b

ba a⋅ = ⋅ (5)

In the calculations of kinematic equations, implemented in C programming language,
the root was replaced by a previously defined macro instruction:

�������� 	
��
��� ��������������������
������������
���

The compiler in the process of compiling these instructions translated into a „custom”
logic of hardware responsible for calculating the square root.

��, �
!�"�
!
��
���
#
���
��
���#
$����%
�����

&�&��������
���
���������
����
����

The calculation correctness obtained from the designed system, with its own square
root calculation instruction has been tested by comparing the trajectories generated in
the joint space with the previously calculated trajectory on a PC. It should be noted, that
the Nios II processor performs all floating point operations with single-precision accuracy
(float 32-bits). By comparing all the points of the obtained trajectories, the calculations
error characteristic has been achieved along the trajectory (Fig. 7).

Different intensities of gray color show respectively the error for the first, second and
third linear drive.

����
-�
��
��
�����
�

�

��

��������#
-�
����'
���
����
�
�����

The resulting error of 50 nm for the position measurement is fully acceptable.

&�*��������	������
����
����

Table 1 shows the changes in the calculation time and the amount of required FPGA
resources depending on the microprocessor system version. For the first variation,
the whole system need 4501 logical elements (LE) of FPGA. The calculation time for one
point of the trajectory was 2324 μs. It means that without supporting the calculation by
the arithmetic coprocessor, the maximum frequency is 430 Hz. In the case of standard hard-
ware Nios II processor instructions for floating-point operations, the time of calculations
shortens to 560 μs. It gives the calculation frequency of 1785 Hz.
The addition of the arith-
metic coprocessor slightly increased the amount of used resources.

The highest calculation efficiency was obtained by adding a custom instruction sup-
porting square root calculation. The amount of used resources increased slightly (by about

;���
<����
	�
���
�
����
�
���

��

��
�

�

�����
���������
��
��
������ ��B

1400 LE comparing to version with Altera coprocessor alone) however the time of calcula-
tion shortened to 143 μs. This enables the kinematic calculations to be made with frequency
of 7 kHz. In typical aluminum machining by high-speed milling, the feed rate is 2 m/min.
It means that in one second the tool moves by 33 mm. With a calculation frequency of 7 kHz,
the distance between the points of trajectory is 4.7 μm. The distance is fully acceptable.

�
�����

��
��
�����
����
��

�
���"
�
�����
��
���
�
�%����
'

*��������
���

In thise paper, knowledge of how to use a custom instruction for improving the perfor-
mance of calculations when solving the inverse kinematics of a parallel robot has been
presented. An example of an actually constructed parallel robot designed for milling appli-
cations has been shown, together with its geometric structure and solution of the inverse
kinematics problem.

The accelerator featured in the paper expands the standard floating-point coprocessor
for the Nios II processor with additional square root instruction. The calculation speed was
quadrupled whereas the number of used logical elements increased by 1D for the Altera
Cyclone IV FPGA chip. The obtained results, based on the developed accelerator, allow to
build a driver, working at a frequency of 7 kHz and ensuring an accurate calculation of
displacement up to 50 nm.

Further computational acceleration of the inverse kinematics would require the usage
of an extended math coprocessor involving much more complex operations. The number
of resources of currently available FPGA systems can fully perform the kinematics calcula-
tions by hardware. In addition, equations allow for a partial parallelization of individual
operations, shortening the computation time. In future research, the authors plan to build
a completely hardware accelerator for the kinetic calculations for the presented structure of
the robot, based on fixed-point arithmetic.

���������

E�F ��"�
�.#
 ����������	 �
���
���	 ��	 ������
�	 �������	 ����	 ��
 *�
��"�
#
 & �#
 /*<0
 �1�A�A, & A

B� &A�.

Nios II
Calculation
time [μs]

Total LEs used
(114480 available)

No coprocessor 2324 4501 (4%)

With coprocessor 560 5840 (5%)

With coprocessor and custom
square root instruction

143 7219 (6%)

>,D?

>BD?

>GD?

��G �
!�"�
!
��
���
#
���
��
���#
$����%
�����

E&F �����
$.#
�
����
	�
���
	����
��������	�
�����������
��.
��	#
�
��H�A�����#
& �#
/*<0

�1�A�)A1& ,A1 �A .

E)F ��
���

�.#
�����
$.#
2�

�.#
 ����������	�!����
�"
	���
����
��
.
�I&)G)�<�><&BJ��3 ?.

E,F ��
���

�.#
#����������
	 ���
�$���	�
�����������
��	�	 ����
��������	 �����!�	 �!����
�"
��.

��.(.
������#
��	#
& 1.

EBF �
����
(.#
�����
$.#
��
���

�.#
 ����������	 ���
����
��
	�	�����
�	���
��	�
��
��
���
�.

�I&� &><&BJ��3 ,K<&BJ�3 G?.

EGF *�����!
(.#
$���!
(.#
 I
����
�.#
$����
 J.#
%	�
�����������
	 �
��
�	%�������	 ��	 ��
	&��
��

'��
������	��	�	(&����	������� ����������.
/���
�������

J��
��

��
�������"�
��
�
��������"#

& � #
�
���
�/(
1&1� �.

E1F ��
���

�.#
�
����
(.#
�
��
�	��
�������	�����
�	�!����
�"
�	�����
	��	��"����
)�*%�
 ��4
�
�A

%���������#
 ���
�!�
 �
 ���
�������%�
 �'����H�
 �!���

!��!'�����"�#
 L�
�!���#
 L'���������

���������%�
�
MN�!��O��#
& ��#
/*<04
�1�A�)A& GA��&&A�.

E�F ����+,,�������
������,#
 & �&A ,A&B.

E�F ����+,,�����
������������,-
 & �&A ,A&B.

E� F ��
������
�.#
���
������
�.#
����"�����-�����
�.#
%�)�*%	 ����
�
�������	 ��	 �	 ��.
�/�����

�0���
	 ����	 ��
�������	 ����433������
.�����
-.���
�.��.��3P��������3���
��������3 �&.��#	 & �&A

 ,A&B�.

����������	
���������

�
����
�
����
��
�
���
�

���

�����		�������� !	����"#"	$%��&$���������������

' (�$)*+
�)�,- *��.
�/
�-0�)���!.1
(�$)*+1
2��$)�

'' ��-
 3� +
 3$*
 -$��4-�
 $*
 $
 �$ �
 �/
 ���5��
 6�7�
 ����1
 ��- $���)$�
 2 �! $&
 �))�,$��,-

60�)�&.
����8����1
2 �� ��.
�
9�)/ $*� %0�% -
$ -$
7:5;

<$3�&�
�$*�$�+$'1
=-) .+
� $304.+'

��������	
�	��
��
���
��	������������
�	

������	
�	�����
��������	������������

�����	
����
�	�����
��

�����	�� ��	���

Context-aware applications are currently one of the most developed group of systems.
They can be described using the CAA model presented in [1]. It allows to express the fact
that activities occurring during the interaction between the application and its environment
are not only limited to reading data from sensors. They are enriched by the analysis of
the data, which can result in starting a particular adaptation action. The data creates a con-
text which represents a situation in the space, and the action modifies the application behav-
ior (i.e. adapts it to the new situation). Additionally, an analysis of the situation and taken
action are carried out in real time, so that the CAA application responds quickly enough
to changes in the space where it is executed. This requires an adequate architecture of that
space. It is realized by providing a special engine in a form of a virtual machine, that defines
the required mechanisms to support the CAA application execution [2]. With this machine,
it is possible to design an architecture of the CAA execution space. The purpose of this
article is to propose a model of such machine and an architecture of
 CAA execution
environment (ICA – Interactive Component Architecture). Introduced machine is called
the PCAA (Parallel CAA) and is derived from the PRAM machines [3]. This article de-
scribes an implementation of the execution environment created according to the proposed
architecture.

In Section 2 it has been presented an overview of the literature on intelligent spaces
and context-aware applications running in them. Section 3 introduces a definition of a con-
text and the CAA applications model, as well as an automata that describes their behavior.
It is the foundation for building a model of the PCAA machine presented in Section 4.

http://dx.doi.org/10.7494/automat.2013.17.2.207
biuro
Tekst maszynowy

��>
<$3�&�
�$*�$�+$1
=-) .+
� $304.+

An architecture of the CAA execution environment (ICA), which components are defined
on the basis of mechanisms contained in the machine, is described in Section 5, while Sec-
tion 6 presents its implementation. Section 7 provides a summary of the work.

!� �
��	
 ����"

An Intelligent Space (IS) is an environment where there are people and applications
(collectively called space users), which aim is to support its users in their everyday duties
[4]. To achieve this goal the space must have a possibility to carry out functions of data
collection, analysis, and action execution. Data collection is performed by sensors, which
read values of parameters of objects existing in the IS. Objects and parameters can be phys-
ical (e.g. temperature) and non-physical (e.g. a value of a cell in a database). To perform
actions the IS uses actuators. Both sensing and acting, together with data analysis and
processing, are performed by so-called DIND (Distributed Intelligent Network Devices)
objects which are an essential part of any IS. The article assumes that those objects are
wrapped and available for applications in the form of SOA services.

One of the most general layered model of context-aware applications running in the IS
has been proposed in [5]. It distinguishes a sensor layer, a raw data layer, a pre-processing
layer, a presentation layer and an application layer. Within the last layer there are performed
an interpretation of a context and an execution of a proper application logic (e.g. a user
interaction). This model allows for the separation and grouping of mechanisms needed for
a context management during an application execution. An example of how those mecha-
nisms can be organized is described in [6]. A programmer specifies which controllers are to
be executed at a time of the occurrence of a specific situation. They are then dynamically
triggered and executed at run-time. A similar approach was proposed in [7]. It is based on
the concept of volunteers which is used as a way for selecting services in heterogeneous
environments. It can therefore be noted that context-aware applications that exist in the IS
may be executed within a special engine, that provides mechanisms supporting this execu-
tion (with respect to particular layers of the layered model). In the approaches described in
the cited publications this engine is embedded in applications. Hence, it makes it not univer-
sal and changing the way it works requires programming modifications in the code of
the application. This leads to a limited portability of applications between different IS and
makes them hard to maintain.

To provide the necessary functionalities, the engine uses monitoring and control sys-
tem mechanisms, which can be found in closed-control loop systems. However, in the case
of context-aware applications execution those mechanisms are used to modify the applica-
tion behavior so as to support its user more adequately in a new situation and not to control
a particular system. Also, expert systems can be treated as context-aware applications.
Depending on an expertise knowledge they are supplied with, that systems can make deci-
sions taking into account a current context. From this point of view, the CLIPS, Drools and

�)
� 0���-0�% -
�/
6�-0%���)
6),� �)&-)�
/�
��)�-��?3 -
�����0$���)*
7%))�)!��� ��#

Gensym/G2 tools allow to create context-aware applications. Moreover, functionality that
they provide may be used in certain components of the CAA execution engine (e.g. analysis
of the current situation in the IS). However, a complete implementation of the engine re-
quires an extension of those mechanisms (such as the use of a knowledge base).

#��$

���	�����
������	
�	��� ��������������	���

An execution process of context-aware applications includes a continuous analysis of
data from the IS. That data are called context data. They are delivered by sensors and create
a context that reflects a situation in the IS. Depending on the situation, a particular adapta-
tion action is executed. Such a definition has been adopted as the basis to build the CAA
model of context-aware applications running in the IS. Its comprehensive concept is shown
in Figure 1.

%���
��
���
$����0$���)
 %))�)!
�)
��-
�)�-���!-)�
*�$0-

Situations occurring in the IS are caused by events that can be divided into external
(i.e. those on which the application has no influence) and internal (i.e. those that are a result
of the application execution – actions). Thus, external events start an execution of the appli-
cation with regard to context-awareness (1). They cause changes in the IS (i.e. they change
the values of parameters describing the state of the IS) (2). The state of a part of the IS
that is important for the application is read by DIND objects which act as sensors (3).
Importance means that the application should react for situations taking place in that part.
Its state is then sent in a form of context data to CAA applications execution mechanisms.

��� ����	
��

��������
������
��������

The data are analyzed in terms of the meeting of so-called expected conditions of an action
invocation. The result of this analysis can lead to trigger and execute adaptation actions (4).
Executing an action is realized as calling a service that wraps an actuator or other services in
terms of SOA. An executed action may interact with users of the IS and can create internal
events. In addition, during execution of the action there may appear more external events
(1). Effects of the action execution and external event occurrence can further change the
state of objects (2) and, consequently, further actions are taken (creating iterative steps).
Moreover, adaptation actions which are a result of the appearance of a specific situation
means that the CAA application interacts with the IS. In Figure 1, there is distinguished
a designer who determines to which situations in the IS (i.e. in what context), and how
the application will react. One of the actions, which start is not dependent on the current
context, starts at the beginning of the application execution and can last until it is finished.
This represents the portion of the application logic that start is not associated with any
situation in the IS. Thus, the application model contains two basic elements: the expected
conditions of an action invocation and actions that are to be executed when conditions are
met. They are grouped into pairs that create the CAA application definition.

The behavior of the CAA application can be represented using the automata shown in
Figure 2. The automata is based on the Timed Automata [8] and is described in detail in [1].

����
��
���	
���
����
������@��
�
@�����	�
	�
�
���
� !�����	�

The CAA application reacts when particular expected conditions of an action invoca-
tion (ozl) are met. Those conditions create an input alphabet of the automata. Due to the fact
that the conditions may be changed during run-time the alphabet is infinite. Therefore, it is
necessary to convert it to a finite alphabet
Σ* = {ozb, ozf}. For this purpose, there has been
defined a function δ: OZ → Σ* which represents the behavior of a transducer:

, for reflecting conditions finishing the application execution
()

, in another case

f

b

oz oz
oz

oz

⎧⎪δ = ⎨
⎪⎩

��
������������
	�
"#�����	�
"����	�
���
�	�
�	���#�$�����
� !�����	��
%�����&''' ���

The approach of changing an input alphabet can be applied because from the point
of view of the CAA applications execution a particular context (situation) does not need to
be known. The most important is that the expected conditions have been met and the action
that is associated with them was triggered. When the TA based automata receives the ozb

symbol it moves to the state of triggering an action. During this transition, the cIAI clock is
reset. Since the CAA are real-time applications, triggering of an action must be made within
a period of time represented by the constant To (reflecting the time limit). After that time
the automata should move without reading an input symbol to the state of waiting for anoth-
er symbol. The (<=) operator checks whether a value of the clock in the left operand is less
than the time period in the right operand. After the action has been triggered it must be
executed in a CAA execution environment. Moreover, it is possible that more expected
conditions will be recognized simultaneously (at the same moment in time) – then all
actions associated with them must be triggered in parallel. This means that there is a need
for parallel data analysis and processing as well as actions execution. Therefore, the autom-
ata moves in parallel to the state of waiting for the next symbol. In case of receiving the ozf

symbol a behavior of the automata is similar to the behavior when processing ozb, but after
the action is triggered the automata moves to a final state where it remains. It is assumed
that the conversion of the alphabet is made in real-time. Because the application operates on
expected conditions and actions, it means that the automata should take into account opera-
tions that regard selection and triggering of an action. Processes of recognizing whether
the current context meets expected conditions, and executing an action are performed by an
application execution environment. Created automata is the foundation for building a ma-
chine (PCAA (Parallel CAA), according to which such an environment should be orga-
nized. This is described in the next section, which defines what mechanisms the machine
must provide to execute a CAA.

&� ��'����	
���
�

Within the PCAA machine there can be defined 4 PRAM machines, corresponding to
mechanisms described in Section 3. Those mechanisms include operations that are executed
in parallel. The first one (PRAM 1) controls the execution of other machines (PRAM 2,
PRAM 3 and PRAM 4), stores objects which create a shared memory, and allows to com-
municate with the designer. Context data are delivered by services which wrap sensors and
are received by the PRAM 2. They complement the application context, which is located in
the shared memory. Then, it is analyzed in the PRAM 3 machine that checks whether any
expected conditions of an action invocation contained in the application definition are met.
An algorithm that is used for this analysis (which may also be described based on
the PRAM machine) depends directly on the implementation and on the representation of
the context. If the expected conditions are met, then (within the PRAM 4 machine) a partic-
ular action is triggered. The current context is passed to the action. Communication between

��� ����	
��

��������
������
��������

the PRAM 3 and
the PRAM 4 is based on signals. Thanks to the described organization of
the PCAA machine, its execution can be done in parallel with regard to collecting context
data, analyzing them, selecting and executing an action.

During the CAA execution, the PCAA machine can communicate with the following
types of services that exist in the IS (they are called base services):

(��������
����
���
����	���
�����
��!����
�	���#�
����
A��!������
�	
)%�*
�B�

(��������
����
���
������	���
����
�	
�#�����
����	��
A����
@�
)%�*
+B�

(�� 	����&
���������
����
�����&
�	���#�
���!����
A����
@�
)%�*
,B'

It is assumed that all services located in the IS are of a type of SOA (see Fig. 1), so they
can be used by the environment built according to the PCAA machine regardless of
the executed CAA application.

Services existing in the IS may have different semantics (the meaning of data ex-
changed with the CAA execution environment) and syntax (different ways of data
exchange). Therefore, with regard to the cooperation between the PCAA machine and het-
erogeneous services, it is necessary to introduce components that would allow to transform
data to the uniform representation and adapt the way how the data are exchanged.
This transformation must be performed when the data are delivered to the PCAA, where it is
possible to analyze them in terms of checking whether they meet expected conditions of
an action invocation. Similarly, when an action is triggered it is necessary to transform data
from the uniform representation to the representation acceptable by a particular service.
A general scheme of how the PCAA machine works is shown in Figure 3.

��������-��
 �	����
	�
�	���#�
����
���!����
������
���
)���

The (+) operation represents the addition of contexts in terms of adding the data sent
by the service to the application context. According to the scheme, there are following in-
structions (which are executed sequentially for each context data) performed within the
PCAA:

(���
(
�	!!�����&
�	���#�
�����

(����
(
�	���#�
����
������	�
���	��

(���
(
�	���#�
���!����
A�������&
�������
�# �����
�	�����	��
	�
��
����	�
 ���	����	�

����
@���

��B�

��
������������
	�
"#�����	�
"����	�
���
�	�
�	���#�$�����
� !�����	��
%�����&''' ��,

(���
(
��!�����&
��
����	�
A����&���
�	
�# �����
�	�����	��B�

(����
(
������	�
���	�
	�
�	���#�
����
�	�
 ������!��
����	��

(���
(
���&&����&
��
����	�'

Data collection (���) corresponds to gathering context data that are delivered from ser-
vices wrapping sensors and it can differ depending on the way how the communication
between an execution environment and services is organized. Then, context data are trans-
formed (����), added into the application context and its analysis (���) is performed. These
instructions (���, ���� and ���) are associated with context data. If the result of the analysis
is a recognition that the context meets expected conditions of an action invocation, a partic-
ular action (assigned to the conditions) is selected – ���. This instruction as well as ����

and ��� are associated with conditions. From the point of view of the execution of a CAA
application, there can also be defined additional instructions corresponding to gathering
data from the IS through sensors and to action execution. However, they do not relate di-
rectly to the PCAA machine (see Fig. 3). It is worth to mention that because ���, ����	and
��� instructions regard expected conditions of an action invocation rather than context data,
a delivery of data does not always result in starting all PCAA instructions. This occurs only
when the PCAA receives context data that create a context that further meets conditions.

CAA applications executed in the environment which is organized according to
the PCAA machine is unloaded from operations related to the acquisition and analysis of
the current context and execution of actions. This is shown in Figure 4, which summarizes
the change in the way how CAA applications are constructed compared to traditional con-
text-aware applications (see Section 2).

����
&�
C���
	�
�	���������&
�
�������	��!
�	���#�$�����
� !�����	�
A�B

���
�
���
� !�����	�
�#������
������
���
)���
A@B

In the case of traditional context-aware applications (Fig. 4a) the analysis of the con-
text and execution of the appropriate adaptation action was carried out by each application.
Additional features, such as communication with sensors and pre-processing of raw data

$. /.

��"
<$3�&�
�$*�$�+$1
=-) .+
� $304.+

obtained from them, could also be implemented by the application or by some intermediate
layer. In the approach which is based on the use of the PCAA machine (Fig. 4b), the ma-
chine provides a communication with services wrapping sensors, analyzes the context and
executes the appropriate action. Thus, the CAA application definition contains a description
of the rules how the machine should work while the PCAA provides adequate mechanisms
of interpretation and implementation of this rules. The traditional context-aware application
is therefore divided into a section describing the rules of its operation (corresponding to
the CAA definition) and an executive part (the PCAA). Having defined the PCAA machine
it is possible to define the components which make up the architecture of the CAA execu-
tion environment (the IS).

(� �
�
�������������������������������
��
����
	�
�

The architecture of the CAA execution environment, which results from the PCAA
machine presented in Section 4, is presented in Figure 5.

�����(�����
$ 0���-0�% -

The ICA architecture consists of the following components, which realize particular
machine instructions (there are also given the corresponding PRAM machines):
8 �$�)
-)!�)-
0�&��)-)�
0�6.
8
27��
�
8
3��0�
�*
��-
0-)� $�
���)�
�/
��-
.�-&1

�� �%!�
3��0�
��
0�&&%)�0$�-*
3���
��-
�-*�!)-
�/
��-
$����0$���)�
��
+--�*
��-
0�)��?

)%��.
 �/
 -�-0%���)
 00�)� ��*
 ��- $���)
 �/
 ���-
 0�&��)-)�*.
 $)�
 -�-0�
 0/$*-�

�)
-��-0�-�
0�)�����)*
3��0�
$ -
&-�.
$0���)*
��
/-
� �!!- -�
8
��
0$ �-*
�%�
��-
 ���

�)*� %0���)�

��
������������
	�
"#�����	�
"����	�
���
�	�
�	���#�$�����
� !�����	��
%�����&''' ��D

(E���
��������
�����	�
���
 AE�"B
(
)%�*
�
(
�	

�������	�
����
@���
��������
 ��

����!��
���	�&�
����
�	
 	����
(
��
�������
	��
����
�����
����
���������	��'

(�	���#�
���!����
�	
 	����
A���B
(
)%�*
,
(
�	
 	����
�����
��
��� 	���@!�
�	�

�	���#�
����
���!����
���
������	�
�������
 ���
�	���#�

����
�# �����
�	�����	��
	�

��
����	�
���	����	�
(
�
 !�
����
���
���������	�'

(����	�
�#�����	�
�	
 	����
 A�"�B
(
)%�*
+
(
 ��
 ��� 	���@!�
 �	�
 ���
�#�����	�
	�

�
��!�����
����	�
A���B'

(��	�!��&�
@���
A�EB
(
�
�	
 	����
����
�	������
�
��	�!��&�
�@	��
���
1�'
1�
��
����

@�
	����
�	
 	�����
�'&'
�	
����� ���
�	���#�
����'

Particular components correspond to mechanisms defined in the PCAA machine
which are necessary to execute CAA applications. They can be implemented in a distributed
manner, so that each of them will operate independently and communicate with various
components of the same type. In the next section there is described an implementation of
the CAA execution environment developed according to the proposed architecture.

)���	���	�
�
���

The architecture presented in Section 5 has been used to develop the CAA execution
environment called CAAEE (CAA Execution Environment). All components are realized
as Web services and communication between them is based on managing sessions. CAC,
BSE, AEC components and base services have been implemented in the .NET technology
(they are located on the IIS server), and KB in Java (it is placed in the Apache Axis contain-
er). The knowledge is stored in the ontology which is described using OWL.

A CAA application designer provides its definition consisting of a set of pairs, each of
which (according to the application model as described in Section 3) contains a description
of expected conditions of an action invocation and a description of an action (in the form
of a BPEL scenario). The ME component passes the definition of conditions to the CAC
component. They are then converted into a Petrie network [9]. This network has the ability
to receive data from sensors wrapped in the SOA services, to interpret them, to add to
the context and to check whether it meets the conditions set by the designer. Data analyzed
in the network may come from the real world or from other applications. They are processed
(using XSLT transformations and the XPath language) in the BSE component and trans-
formed to the uniform representation (using the ontology contained in KB), so that they can
be analyzed in the CAC component. If the current context derived from delivered data
meets expected conditions, a control signal is sent to the ME. The ME component selects
an action assigned to recognized conditions and communicates it to the AEC (as a signal
that contains context data received from the CAC). The action is then executed in
the Apache ODE engine. At the time of its execution the CAAEE may use the services
which are present in the IS.

��F ����	
��

��������
������
��������

*����
������
�

A practical implementation of the PCAA machine requires a definition of components
that support a CAA application execution. They create an implementable architecture for
a CAA execution environment. This paper describes both the PCAA machine and the re-
sulting ICA architecture. Its particular components can be prepared using different pro-
gramming languages. Such implemented components together with mechanisms necessary
for communication and service management creates the CAA execution environment,
which is called CAAEE. Its proper operation has been checked using a set of sample base
services. It has also been shown that the implementation works in the real world. This
allows to create a fully functional environment, which is able to execute CAA applications
in real-time. It is worth to note that this type of environment includes mechanisms that
may also be found in modern control systems. However, they differ as to their purpose
(i.e. a modification of the application behavior in order to more adequately support the user
in case of the CAA) as well as the technology of an implementation.

The ICA architecture defines the functional components which correspond to the in-
structions defined in the PCAA model. Thus, it possible to define an application by an
end-user, assuming that he does not have a programming knowledge. The user can prepare
a set of rules according to which the application is supposed to behave, and the execution
environment will take the responsibility of an implementation of these rules in the form
of the executable application. By placing the machine directly in the intelligent space,
the application execution becomes its integral function, which is in line with current trends
in the development of intelligent spaces. Thus, the fact of an existence of the PCAA ma-
chine in the space makes it intelligent, while the degree of the intelligence depends on
the applications running in it.

������
���

G�H ��������
�'�

�������
�'�
�	
��	
����	 ���	 �������	 �����	 ������������	 ��������	 ���	 ������'

-��
 I����
 1��������	��!
 �	��������
 	�
 *	@�!�
 2@�J���	��
 �	
 ����&�
 �����
��
 ��������
 ���

-����	!	&����
1�%1�
�	���������
�����
 '
���(��3'

G�H
�������
�'�
�����	 ���������	 ��	 ��������� !	���������	 �������������"	�������#�	 �������#���"

�	����������#	��$����$���	�����	A%��������	��	�������	��	���������	����������	��	���������&�	�����'

��&�	������������	�������	��	���������	���&����	��&����(���B'
4	��	��!
����������	��
5�����
2��$

�������
	�
-����	!	&��
����'

G,H I	�����
�'�
C�!!��
K'�
)���������(��	�����(������	(��"����'
)�	������&�
	�
���
-����
�����!

��*
��
 	���

	�
-��	��
	�
�	
 ����&�
�637�
 '
��+(��7'

G+H L��
 K'�'�
*	��	��
�'�
���	

'�
�����
	�	
�'�
*����������	 ��	������+����	 %����������	 ,������

��	 %����������	 -�&����(���'
 1"""8��*"
 -��������	��
 9�
 *������	�����
 �	!'
 6�

	'
 ,�
 ���+�

 '
D,D(D+,'

GDH ��!���	
�'�
�!������
)'�
�����M�
:'�
��!!N���
:'�
L����	!

*'�
,����������	*������	�����	�����'

�������.	 /�&�'0����	
����	 ���	-��(���	*���'
)�	������&�
	�
 ���
C	����	
	�
�	��� ��
 ���

*	��!�
�	�
2@�J���	��
�	
 ����&�
����'

��
������������
	�
"#�����	�
"����	�
���
�	�
�	���#�$�����
� !�����	��
%�����&''' ��3

GFH %��
��
�'�
���M��	
I'�
�	�!	����
5'�
��	���"��������	���	%��������&�	*������'�����	������������'

)��������
�	
 ����&�
�	!'
F�
�����
��
���3�
 '
3,(7�'

G3H ��

*'K'�
��
��
*'�
 �������
 E'�'�
��	�&
�'K'�
 �	
�&��	 ���"��������	 ���)��&��������	 1����

,��&����	 ��	2������������)��&���&�	-�&����(����'
C	�!�
	�
C���!����
*	@�!�
���
*�!��
����

���	����
���3�
 '
�(+'

G7H �!��
%'�
4�!!
4'L'�
�	�"����	��	��(��	����(���'
-��	������!
�	
 ����
��������
�	!'
��F�
�����
��

�66+�
 '
�7,(�,D'

G6H ��������
�'�

�������
�'�

�����	��$���$����	���������	���	�������#�	����������"	$���$����(�

A�	 (��"��	 ���	 ����&���	 �������	 ���	 �&���	 ���&��	 ������������B'
*���	��
 	�
� !���
�	
 ����

��������
)�
�
���7�
 '
7�(6�'

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /PLK ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

